

IB Linear Algebra – Example Sheet 3

Michaelmas 2025

hb470@cam.ac.uk

1. Find the eigenvalues and give bases for the eigenspaces of the following complex matrices:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & -1 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}.$$

The second and third matrices commute; find a basis with respect to which they are both diagonal.

2. By considering the rank or minimal polynomial of a suitable matrix, find the eigenvalues of the $n \times n$ real matrix A with each diagonal entry equal to λ and all other entries 1. Hence write down the determinant of A .

3. Let A be an $n \times n$ matrix all the entries of which are real. Show that the minimum polynomial of A , over the complex numbers, has real coefficients.

4. Prove the Generalised Eigenspace Decomposition Theorem (stated in lectures).

5. Let α be an endomorphism of a complex vector space V . Show that if λ is an eigenvalue for α then λ^2 is an eigenvalue for α^2 . Show further that every eigenvalue of α^2 arises in this way. Are the eigenspaces $\text{Ker}(\alpha - \lambda \text{id}_V)$ and $\text{Ker}(\alpha^2 - \lambda^2 \text{id}_V)$ necessarily the same?

6. Find a basis with respect to which $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ is in Jordan normal form. Hence compute $\begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}^{1000}$.

7. Without appealing directly to the uniqueness of Jordan Normal Form show that none of the following real matrices are similar:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Is the matrix

$$\begin{pmatrix} -2 & -2 & -1 \\ 3 & 3 & 1 \\ 3 & 2 & 2 \end{pmatrix}$$

similar to any of them? If so, which? Find a basis such that it is in Jordan Normal Form.

8. Recall that the Jordan normal form of a 3×3 complex matrix can be deduced from its characteristic and minimal polynomials. Give an example to show that this is not so for 4×4 complex matrices.

9. Let $J_n(\lambda) \in \mathcal{M}_{n \times n}(\mathbb{C})$ be the n -by- n Jordan block with diagonal entry $\lambda \in \mathbb{C}$. Find the Jordan normal form of $J_n(\lambda)^k$ for every positive integer k .
(You may find it helpful to consider the case $\lambda = 0$ separately.)

10. Let V be a vector space of dimension n and α an endomorphism of V with $\alpha^n = 0$ but $\alpha^{n-1} \neq 0$. Without appealing to Jordan Normal Form, show that there is a vector y such that $(y, \alpha(y), \alpha^2(y), \dots, \alpha^{n-1}(y))$ is a basis for V . What is the matrix representation of α with respect to this basis? And the matrix representation of α^k , for an arbitrary positive integer k ?
Show that if β is an endomorphism of V which commutes with α , then $\beta = p(\alpha)$ for some polynomial p . [Hint: consider $\beta(y)$.] What is the form of the matrix for β with respect to the above basis?

11. (a) Let A be an invertible square matrix. Describe the eigenvalues and the characteristic and minimal polynomials of A^{-1} in terms of those of A .

(b) Prove that the inverse of a Jordan block $J_m(\lambda)$ with $\lambda \neq 0$ has Jordan Normal Form a Jordan block $J_m(\lambda^{-1})$. Use this to find the Jordan Normal Form of A^{-1} , for an invertible square matrix A .

(c) Prove that any square complex matrix is similar to its transpose.

12. Let C be an $n \times n$ matrix over \mathbb{C} , and write $C = A + iB$, where A and B are real $n \times n$ matrices. By considering $\det(A + \lambda B)$ as a function of λ , show that if C is invertible then there exists a real number λ such that $A + \lambda B$ is invertible. Deduce that if two $n \times n$ real matrices P and Q are similar when regarded as matrices over \mathbb{C} , then they are similar as matrices over \mathbb{R} .

13. Let $f(x) = a_0 + a_1x + \dots + a_nx^n$, with $a_i \in \mathbb{C}$, and let C be the *circulant* matrix

$$\begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_n \\ a_n & a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_n & a_0 & \dots & a_{n-2} \\ \vdots & & & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_0 \end{pmatrix}.$$

Show that the determinant of C is $\det C = \prod_{j=0}^n f(\zeta^j)$, where $\zeta = \exp(2\pi i/(n+1))$.

Bonus/Optional Questions

- (Cayley–Hamilton theorem for a general field) Let \mathbb{F} be any field, $A \in M_{n \times n}(\mathbb{F})$, and $B = tI - A$. By considering the equation $B \cdot \text{adj}(B) = \det(B)I$, or otherwise, prove that $\chi_A(A) = 0$, where $\chi_A(t)$ is the characteristic polynomial of A .
- Let A be a 5×5 complex matrix with $A^4 = A^2 \neq A$. What are the possible minimal polynomials of A ? If A is not diagonalisable, what are the possible characteristic polynomials and JNFs of A ? (*The list is quite long!*)
- Give an example of a real vector space V and a linear map $\alpha \in \mathcal{L}(V, V)$ such that every real number is an eigenvalue of α .